Использование пластмассовых композитов в авиационно-космической промышленности в былые времена ограничивалось внешней обшивкой самолетов, носками крыла и задними кромками крыла, бортовыми кухнями воздушного судна и прочими применениями для производства не конструкционных деталей. Но в наши дни пластмассовые композиты используются для производства таких несущих конструкций, как крылья, фюзеляжи и поперечные балки…

Заменяя алюминий и другие металлы при производстве деталей самолетов на высокоэффективные композиты низкой плотности, создатели самолетов надеются снизить массу своих самолетов. А это может привести к сокращению платы за топливо для клиентов самолетов коммерческой авиации, которые постоянно сталкиваются с ростом конкуренции и беспрецедентным повышением топливных затрат.

Примерно 15% от структурной массы современного гражданского самолета в наши дни составляют пластиковые композиты, преимущественно, изготовленные из углеродной пластмассы, армированной волокном. В запускаемом в настоящее время в производство новом поколении самолетов будет использовано до 50% конструкционных композитов. Согласно исследованию использования пластмассовых композитов в авиационно-космической промышленности, которое подготовило EADS Deutschland GmbH (European Aeronautic Defense and Space Co), детали самолетов, изготовленные из композитов, на 15-20% легче, чем аналогичные детали, изготовленные из алюминия.

Экономия на эксплуатационных расходах за счет уменьшения массы самолетов оценивается в отчете суммой от 100 до 1000 евро (в зависимости от области применения) на килограмм сэкономленной массы. Такая экономия образуется за счет более низких затрат на топливо и меньшей потребности в материально-техническом обслуживании, которое при использовании металлов возникает из-за их усталости и коррозии.

Несмотря на существенные преимущества, которые дает их использование, пластмассовые композиты все еще встречаются с препятствиями на пути своего продвижения на авиационно-космическую арену. Во-первых, они зачастую дороже, чем сопоставимые металлические материалы. Они также испытывают конкуренцию со стороны новых облегченных сплавов металлов и композитов. Кроме того, сертификация пластмассовых композитов – или любых иных новых материалов – для использования при производстве несущих конструкций самолетов, представляет собой долгий процесс, на который требуются месяцы и годы дорогостоящих испытаний безопасности.

Для того чтобы значительно повысить конкурентоспособность пластмассовых композитов, производители разрабатывают технологии более низкозатратного производства, которое менее трудоемко и капиталоемко, а также более компьютеризировано, чем традиционные методы.

Материалы

В состав каучуков, используемых в авиационно-космической промышленности, входит много термоотверждающихся пластиков. К их числу относятся эпоксидная, фенольная, бисмалеимидная, уретановая, цианоэфирная и винилэфирная смолы. Используются также и термопластики, включая поликарбонат, полиэтилентерефталат (PET), нейлон, сополимер акрилонитрил-бутадиен-стирола (АБС), ацеталь, полиэтилен, полистирол и жидкокристаллические полимеры. В качестве наиболее часто используемых материалов для армирования авиационно-космических композитов используются волокна, тканые материалы или пленки, изготовленные из углерода, стекла или арамида.

Для производства высококачественных композитов, используемых для конструкционных применений при производстве самолетов, обычно используют эпоксидные и фенольные смолы. Для армирования, как правило, используют углеродное волокно. Чаще всего такое волокно изготавливается путем воздействия очень высоких температур на нити из полиакрилонитрила (PAN).

Наслаивание с предварительной пропиткой

Для производства конструкционных пластмассовых композитов наиболее часто используемой технологией является насыщение тканых материалов из углеродного волокна матрицей из невулканизированной смолы, такой как эпоксидная, для формирования предварительно пропитанной конструкции. В ходе следующего этапа, который называется наслаивание, специалисты помещают предварительно пропитанную деталь в пресс-форму, располагая поверх сотоподобную структуру, затем основная часть покрывается дополнительными слоями предварительно пропитанных листов. Затем детали вулканизируют в автоклаве под воздействием высокой температуры и давления (технология соединения внешних слоев с внутренней основной частью). Затем получаемую композитную панель подгоняют по размеру.
Наслаивание с предварительной пропиткой представляет собой метод производства, используемый для создания крыльев для нового реактивного самолета Boeing 787, который на 50% состоит из композитов: на сегодняшний день это самая большая доля композитов, используемая при производстве самолетов коммерческой авиации. Планируется, что самолет, который будет перевозить 200-300 пассажиров, начнет совершать регулярные рейсы в 2008г. Как сообщают в компании Boeing, он будет расходовать на 20% топлива меньше, чем реактивные лайнеры того же размера. Также крылья, передняя часть фюзеляжа и хвост нового европейского боевого самолета Eurofighter Typhoon изготовлены из пластмассовых композитов, произведенных методом наслаивания.

Метод наслаивания предварительно пропитанных углеродных/эпоксидных слоев используется также для создания отсека вертикального хвостового оперения нового реактивного самолета на 555 мест Airbus A380, который станет самым большим в мире самолетом коммерческой авиации, когда он вступит в эксплуатацию в 2008г.

Автоматизированное нанесение пленки

Для сокращения эксплуатационных расходов некоторые методы производства авиационных композитов, включающие процесс предварительного пропитывания, могут быть автоматизированы. Одной из таких технологий является технология «нанесения пленки»: в ходе этого процесса предварительно пропитанная пленка из углеродного волокна и смолы наматывается на стержень. Намотанная пленка затем вулканизируется в автоклаве, стержень удаляется, а форма композита сохраняется. Когда форма сложная, наматывание пленки может производиться машиной, так что пленка надежно прилегает по всем сложным контурам формы. Такая технология автоматизированного нанесения пленки будет использована для производства центральной части крыла самолета Boeing 787.

С технологией автоматизированного нанесения пленки тесно связана технология формования намоткой волокон, при которой установка наматывает волокна углерода или другого армирующего материала на вращающийся стержень. Головка держателя волокна двигается туда и обратно в то время, как стержень вращается, так что пучки волокон наматываются единообразно. Как правило, волокна окунают в ванну со смолой непосредственно перед наматыванием, хотя без ванны можно обойтись, если использовать предварительную подготовку нити (непрерывную нить, предварительно пропитанную смолой). После вулканизации в автоклаве стержень удаляют. Формование намоткой нити в настоящее время используется для производства целых фюзеляжей реактивных самолетов на несколько пассажиров.