Пластмассы — композиционные материалы, изготовленные на основе полимеров, способные при заданных температуре и давлении принимать определенную форму, которая сохраняется в условиях эксплуатации.
В зависимости от числа компонентов пластмассы бывают однокомпонентные (простые) и многокомпонентные (композиционные). Простыми являются, например, полиэтилен, полистирол, состоящие из синтетической смолы. В композиционных пластмассах (фенопласты, аминопласты и др.) смола является связующим для других компонентов. Ими являются наполнители, пластификаторы, отвердители, ускорители (активаторы), красители, смазочные вещества и другие компоненты, придающие пластмассе необходимые свойства.
Доля дополнительных компонентов может достигать 70 %. Это позволяет создавать композиционные материалы, обладающие в соответствии с потребностями производства совокупностью тех или иных свойств: достаточной прочностью, виброустойчивостью, хорошей химической стойкостью против действия кислот, щелочей и других агрессивных сред, высокими фрикционными или антифрикционными, шумопоглощающими, диэлектрическими, теплоизоляционными и другими свойствами.
В ремонтном производстве полимерные материалы применяют для: заделки в деталях трещин, пробоин и раковин; склеивания; восстановления формы и размеров изношенных деталей; герметизации стыков; изготовления быстроизнашивающихся деталей или отдельных их частей.
В зависимости от способности возвращаться под действием температуры в исходное состояние различают термореактивные и термопластичные полимерные материалы.
Термопластичные материалы или термопласты при повышении температуры переходят в пластическое состояние, а при охлаждении восстанавливают свои свойства. Поэтому они могут многократно перерабатываться. Применяя различные термические способы, термопласты наносят на поверхности деталей в виде покрытий различного назначения (антифрикционные, защитные, изоляционные и т.д.). Из некоторых термопластов (полиамидов типа капролактан, АК-7 и др.) изготовляют методом литья под давлением втулки подшипников скольжения и другие детали.
Важным эксплуатационным свойством термопластов является термостабильность — время, в течение которого термопласт может выдерживать определенную температуру, сохраняя свои свойства. Основными технологическими свойствами пластмасс являются: текучесть (способность материала заполнять форму при определенной температуре и давлении); усадка (уменьшение размеров готовой детали по сравнению с соответствующими размерами пресс-формы); скорость отверждения, которая зависит от свойств и соотношения смолы и отвердителя, а также температуры, при которой происходит процесс отверждения.
При ремонте широко применяются полиэтилен, поликапроамид, фторопласт и другие термопласты.
Полиэтилен отличается хорошей пластичностью, которая сохраняется даже при низкой температуре, что позволяет применять его для изготовления и восстановления гибких изделий (труб) и защитных покрытий.
Поликапроамид, обладая достаточной прочностью и стойкостью против воздействия щелочей и различных горючесмазочных материалов, применяется в качестве конструкционного материала для изготовления шестерен и втулок, нанесения на детали износостойких покрытий.
Фторопласт, благодаря высокой температуре плавления (327 °С), низкому коэффициенту трения, высокой износостойкости и практически отсутствию адгезии при контакте с металлами, применяется для изготовления втулок подшипников скольжения, работающих при температуре до 250 °С. По химической стойкости он превосходит все материалы, что обуславливает широкую область его применения в различных агрессивных средах. Отсутствие адгезионного взаимодействия с металлами затрудняет применение фторопласта для нанесения на них защитных покрытий напылением. Поэтому обычно применяют механическое крепление фторопластовых накладок к восстанавливаемым изделиям.
Термореактивные материалы или реактопласты (текстолит, волокнит, стекловолокнит, эпоксидные композиции и др.) отличаются тем, что при нагревании в результате химических реакций они необратимо переходят в твердое, неплавкое и нерастворимое состояние. При повторном нагревании они могут разрушиться. Из термореактивных пластмасс при ремонте широко применяются композиции, включающие эпоксидные (ЭД-16, ЭД-20), фенольно-формальдегидные и другие смолы, отвердители, пластификаторы и иные компоненты.
При смешивании с отвердителем (полиэтиленполиамин, ароматические амины и др.) эпоксидная смола переходит в твердое и нерастворимое состояние. Этот процесс в зависимости от отвердителя может происходить при различной температуре. Например, при использовании в качестве отвердителя фтористого бора отвердение происходит при отрицательной температуре. С увеличением доли отвердителя повышается хрупкость композиционного материала, а при ее уменьшении процесс отвердения удлиняется, поэтому для получения качественного полимерного материала необходимо соблюдать установленные инструкциями рекомендации по соотношению смолы и отвердителя. Это относится и к другим компонентам полимерного состава.
Пластификаторы (дибутилфталат, триэтиленгликоль, тиокол и др.) служат для повышения ударной вязкости и прочности композиционного материала, снижения его чувствительности к термоциклическим напряжениям, придания эластичности и других требуемых свойств.
Наполнители неорганические (металлический порошок, графит, кварцевая и слюдяная мука, тальк, асбест, волокна углерода, стекловолокно, стеклоткань и др.) и органические (бумага, целлюлоза, древесная мука, хлопчатобумажная ткань и др.) позволяют управлять физико-механическими свойствами композиционного материала для повышения прочности, износостойкости, теплостойкости и т.д. Например, изменяя соотношение между содержанием металлических и неметаллических порошков, можно уменьшить усадку нанесенного полимерного покрытия и различие в значениях коэффициентов линейного расширения детали и покрытия, а за счет введения графита повысить его износостойкость. Применение волокнистых наполнителей позволяет получать на основе фенольно-формальдегидных смол широко применяемые для изготовления деталей машин волокнит, стекловолокнит и другие материалы повышенной прочности.
Термореактивные пластмассы применяют для заделки вмятин, трещин, пор и раковин в деталях из металлических и неметаллических материалов, для восстановления в корпусных деталях посадочных поверхностей под подшипники, а также изготовления новых деталей.
В зависимости от свойств пластмассы могут перерабатываться в детали в вязкотекучем состоянии (литье под давлением, выдавливание, прессование), в высокоэластичном состоянии (штамповка, пневмо- и вакуум формовка); в твердом состоянии (обработка, резание, склеивание, сварка) и другими методами.
Применение полимерных материалов при ремонте машин по сравнению с другими способами восстановления позволяет на 20—30 % снизить трудоемкость и на 15—20 % себестоимость ремонта, а также исключить сложные технологические процессы, характерные при нанесении металлических материалов и их обработке. Существенно (на 40—50 %) уменьшается расход конструкционных материалов (зачастую дефицитных и дорогих — цветных металлов и нержавеющих сталей) и соответственно — вес деталей. При этом полимерные материалы не снижают усталостную прочность восстановленных ими деталей, что во многих случаях позволяет не только заменить сварку или наплавку, но и восстанавливать детали, которые другими технологическими способами восстановить или невозможно, или невыгодно, или это сопряжено с тяжелыми условиями труда.
Для практического применения полимерных материалов обычно не требуется сложное технологическое оборудование, что важно в условиях ремонтного производства.
Недостатками полимерных материалов по сравнению с металлами являются меньшая прочность, интенсивное старение, низкая теплопроводность и тепловая стойкость отдельных материалов.
Эластомеры и герметики. Для герметизации и восстановления посадок неподвижных соединений применяются эластомеры и герметики, в том числе анаэробные. Эластомеры выпускаются в виде листов толщиной 2—5 мм, из которых на основе ацетона готовят рабочий раствор. Для этого необходимое количество эластомера разделяют на мелкие кусочки, которые заливают в стеклянной емкости расчетным в соответствии с инструкцией количеством ацетона и выдерживают в нем до растворения. Полученный раствор необходимо хранить в плотно закрытых емкостях. Удобны готовые к применению эластомеры на основе резины холодного химического отверждения, которые представляют собой двухкомпонентные материалы, поставляемые в жидком или пастообразном состоянии. Их применяют для восстановления резиновых покрытий деталей, шлангов, изоляции, а также для отливки нестандартных форм манжет, уплотнений и прокладок.
Покрываемая поверхность детали подвергается пескоструйной очистке или шлифованию до полной очистки и придания ей повышенной шероховатости для улучшения сцепления с покрытием. Перед нанесением покрытия подготовленную поверхность обезжиривают специальным средством или ацетоном. Оба компонента наносимого материала (основу и активатор) смешивают между собой для обеспечения однородности смеси и удаления из нее воздуха. При устранении больших трещин и сколов рекомендуется покрытие армировать стеклотканью, что увеличивает его прочность.
Наиболее эффективным герметизирующим материалом являются герметики на основе полимеров и олигомеров. Применяются герметики термопластичные и термореактивные, высыхающие и невысыхающие, полимеризующиеся, вулканизирующие и нетвердеющие.